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Abstract: We consider supersymmetric Wilson loops of the variety constructed by

Drukker, Giombi, Ricci, and Trancanelli, whose spatial contours lie on a two-sphere. Work-

ing to second order in the ’t Hooft coupling in planar N = 4 Supersymmetric Yang-Mills

Theory (SYM), we compute the vacuum expectation value of a wavy-latitude and of a loop

composed of two longitudes. We evaluate the resulting integrals numerically and find that

the results are consistent with the zero-instanton sector calculation of Wilson loops in 2-d

Yang-Mills on S2 performed by Bassetto and Griguolo. We also consider the connected

correlator of two distinct latitudes to third order in the ’t Hooft coupling in planar N = 4

SYM. We compare the result in the limit where the latitudes become coincident to a pertur-

bative calculation in 2-d Yang-Mills on S2 using a light-cone Wu-Mandelstam-Leibbrandt

prescription. The two calculations produce differing results.
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1. Introduction and results

The study of Wilson loops in N = 4 supersymmetric Yang-Mills theory [1, 2] has provided

a unique and rich avenue for probing the AdS/CFT correspondence [3] as well as the theory

itself. Certain loops which respect some of the supersymmetries of the underlying theory

have been analyzed with great success. Loops with arbitrary shape may be constructed

with enough supersymmetry to yield trivial vacuum expectation values [6, 7], a result which

is also well understood in string theory [8]. Supersymmetric Wilson loops with non-trivial

vacuum expectation values are also of prime interest. The 1/2 BPS circle was understood

early-on to be described by a zero-dimensional theory - the celebrated Hermitian matrix

model of Erickson, Semenoff, and Zarembo [9]. This matrix model appears to encode the
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object entirely [10], including the string-side manifestation of large representations [11 –

18] and two-point functions with local operators [19 – 22]. Indeed, a recent paper [23]

has claimed a proof of this result. Recently, a much larger class of supersymmetric loops

with non-trivial expectation values were discovered [24]. These loops lie on an S3 and are

generically 1/16 BPS. An important subclass of those loops lie on a great S2 inside the S3.

It has been suggested by their discoverers that these Wilson loops might be captured exactly

by a reduced two-dimensional model which one could describe roughly as a perturbative

pure Yang-Mills theory on S2, where the Wu-Mandelstam-Leibbrandt [25 – 27] prescription

for the regularization of the propagator is used [28, 29]. We will refer to this simply as the

“reduced 2-d model”.

The Wilson loop on S2 proposed by [24] is given by

W =
1

N
TrP exp

∮
dτ
(
i ẋiAi + ǫijk x

j ẋk M i
I ΦI

)
(1.1)

where xi(τ) (where i = 1, . . . , 3, I = 1, . . . , 6) is a closed path on S2, and M i
I is a 3 × 6

matrix satisfying MMT = 1 and which we will take to be M i
i = 1 (no summation implied)

and all other entries zero. The existing evidence that this object might be captured by a

reduced 2-d model has been presented in [28] and [29]. Here we will give a short review

of those results. One of the most compelling observations is that the combined scalar

and gauge field (Feynman gauge) propagator joining two points x and y on the loop (the

so-called “loop-to-loop propagator”) is given by

D4d ∝ g2

R2

(
1

2
δij −

(x− y)i(x− y)j
(x− y)2

)
, i, j = 1, 2, 3 (1.2)

where R is the radius of the S2. This indeed is the propagator of pure 2-d Yang-Mills in

a certain gauge, with coupling g2
2d

= −g2/(4πR2). Using this one can prove via Stokes

theorem that for a general closed contour on S2

〈W 〉 = 1 + λ
A1A2

2A2
+ O(λ2), (1.3)

where λ = g2N , and A1 and A2 are the two areas of the S2 bounded by the Wilson loop,

while A is their sum, the total sphere area. This result can then be compared to that for

a Wilson loop of arbitrary path in 2-d Yang-Mills on S2 in the zero-instanton sector, as

calculated by Bassetto and Griguolo [32] using the expansion of Witten [33, 34].1 Under

the proposed relation between the 2-d and 4-d coupling, that result reads2

〈W 〉 =
1

N
L1

N−1

(
−g2A1A2

A2

)
exp

(
g2A1A2

A2

)
, (1.4)

and agrees with (1.3) to first order in λ. In fact the 1/2 BPS circular Wilson loop of

N = 4 supersymmetric Yang-Mills theory, and further, Drukker’s 1/4 BPS generalization

1In the work [36], it was shown that in summing this expansion, instantons are crucial for the recovery

of strong coupling physics [35].
2Lm

n is the Laguerre polynomial Lm
n (x) = 1/n! exp[x]x−m(d/dx)n(exp[−x]xn+m).
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of it [30] are special cases of (1.1). As mentioned above, there exists a wealth of evidence

(both at weak and at strong coupling, and especially for the 1/2 BPS circle) that these

loops are described exactly by a Hermitian matrix model, whose result for 〈W 〉 agrees

precisely with (1.4). Finally, the authors in [29] present a strong coupling calculation of

〈W 〉 for a Wilson loop composed of two longitudes separated by an arbitrary angle using

the AdS/CFT correspondence. That result is also in agreement with (1.4).

In the decompactification limit R→ ∞, (1.4) agrees with the perturbative calculation

of Staudacher and Krauth [31], performed by summing-up ladder diagrams in the light-

cone Wu-Mandelstam-Leibbrandt prescription for 2-d Yang-Mills in the plane. The “2-d

reduced model” proposed in [29] is essentially the same idea; albeit on S2 rather than the

plane and in a different gauge. They first give an action on an S2 parametrized by complex

coordinates z, z̄

xi =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1 − zz̄). (1.5)

Beginning with generalized Feynman gauge with gauge parameter ξ = −1 they propose

the following Langragian density

L =

√
g

g2
2d

[
1

4
(F a

ij)
2 − 1

2
(∇iAa

i )
2

]
(1.6)

where g is the determinant of the S2 metric (i.e. ds2 = 4dzdz̄/(1 + zz̄)2). This leads to

propagators for the Az and Az̄ fields as follows

〈Az(z)Az(w)〉 =
g2
2d

π

1

(1 + zz̄)

1

(1 + ww̄)

z̄ − w̄

z − w

〈Az̄(z)Az̄(w)〉 =
g2
2d

π

1

(1 + zz̄)

1

(1 + ww̄)

z − w

z̄ − w̄

(1.7)

which agree with (1.2) when written in the original cartesian coordinates. In the de-

compactification limit these propagators coincide with the Wu-Mandelstam-Leibbrandt,

light-cone propagators used by Staudacher and Krauth, up to a factor of 2. However one

can change here to a light-cone gauge, setting Az̄ = 0; this gauge choice just results in

twice the first propagator in (1.7). This light-cone gauge propagator takes on the form

D4d + iD0 (1.8)

where D4d is the loop-to-loop propagator from N = 4 SYM in Feynman gauge (i.e. (1.2))

while iD0 is a new imaginary piece generated by the gauge transformation. Employing

this gauge affords a great simplification in Feynman diagrams since interactions are clearly

removed; one needs only consider the sum of ladder diagrams. These might reproduce (1.4)

for single Wilson loops on S2. For the connected correlator of two Wilson loops, one can

simply compare N = 4 SYM results to ladder diagrams.

It is the purpose of this paper to explore the connection of the Wilson loops (1.1) to

the proposed reduced 2-d model further. We consider the vacuum expectation value (VEV)

of the Wilson loop constructed in [29] consisting of two longitudes to second order in the ’t

Hooft coupling. The resulting integrals involve Feynman parameters as well as integrations

– 3 –
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Figure 1: The three geometries of Wilson loops on S2 we consider: two longitudes, wavy-latitude,

and two latitudes.

over the longitudes themselves. We find that for angles away from zero separating the lon-

gitudes, numerical integration produces accurate results. These are in excellent agreement

with (1.4). We continue to the same calculation for a “wavy-latitude”: a latitude with a

sinusoidal wave of low period in the polar angle describing it, see figure 1. Using the same

techniques, we similarly find excellent agreement with (1.4), and for a continuous range

of wave amplitudes. We also consider the connected correlator of two distinct latitudes

to third order in the ’t Hooft coupling. In this case we cannot compare to the Bassetto

and Griguolo result, as that result is valid for the VEV of a single Wilson loop and not a

connected correlator of two. Instead we compare to the reduced 2-d model of [29] presented

above, in light-cone gauge. The reduced model produces results which are consistent with

the result from planar N = 4 SYM at leading order (second order) in the ’t Hooft cou-

pling. However at the next order, i.e. third order in the ’t Hooft coupling, we do not find

agreement. It is possible that in another gauge, e.g. the generalized Feynman gauge with

ξ = −1, a result in agreement with the N = 4 calculation could be found. Both the re-

striction to the zero instanton sector, and the Wu-Mandelstam-Leibbrandt prescription are

issues which could preclude gauge invariance here. It was shown in [29] that for a circular

Wilson loop, the ξ = −1 gauge and the light-cone gauge give the same result at second

order in the ’t Hooft coupling, however the same might not be true here at third order.

The structure of the paper is as follows. In section 2 we calculate the VEV of single

Wilson loops; we consider the case of two longitudes and of a wavy latitude. In section 3

we compare the connected correlator of two latitudes, as calculated in N = 4 SYM to the

expectation from the 2-d reduced model in light-cone gauge. We conclude with a discussion

of the results in section 4. The details of the calculations, which are very complicated, have

been included in the appendices. As this manuscript was being readied for publication [37]

appeared which has some overlap with section 2.1.

2. Calculations of 〈W 〉 at O(λ2)

We consider the VEV of a Wilson loop of the variety (1.1). As explained in the introduction,

at O(λ) these loops have been proven to be captured by (1.4). We would like to understand

whether this agreement persists at the next order in perturbation theory. A two-loop

calculation was performed for the 1/2 BPS circle in [9]; we follow that calculation closely

and refer the reader there for conventions and notation. We use the Euclidean action of

N = 4 SYM in Feynman gauge and dimensional regularization.

– 4 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
7

Figure 2: The two-loop, non-ladder/rainbow diagrams contributing to 〈W 〉. The Wilson loop is

indicated by the outer circle. Internal solid lines refer to scalar and gauge fields, while the greyed-in

bubble represents the one-loop correction to the propagator.

There are three types of diagrams contributing to 〈W 〉 at O(λ2). The simplest are

the rainbow/ladder graphs - those graphs without interaction vertices. The next contri-

butions come from diagrams with interaction vertices, these are shown schematically in

figure 2. In what follows we will assume smooth Wilson loop contours; the case of the two

longitudes will be slightly different. We may generalize eq. (13) of [9], which gives the

contribution from the diagram on the left in figure 2. In keeping with their notation, we

call this quantity Σ3

Σ3 = −λ
2

4

∮
dτ1 dτ2 dτ3 ǫ(τ1 τ2 τ3)D(τ1, τ3)ẋ2 · ∂x1

G(x1, x2, x3) (2.1)

where3 we have used D(τ1, τ3) to refer to the numerator of the loop-to-loop propagator,

i.e. in our case D(τ1, τ2) = (ẋ1 · ẋ2)(x1 · x2 − 1) − (x1 · ẋ2)(x2 · ẋ1), while the function G is

as defined in [9]

G(x1, x2, x3) =
Γ(2ω − 3)

26π2ω

∫ 1

0

dαdβ dγ (αβγ)ω−2δ(1 − α− β − γ)

× 1
[
αβ(x1 − x2)2 + βγ(x2 − x3)2 + αγ(x1 − x3)2

]2ω−3

(2.2)

where the number of dimensions is given by d = 2ω, so that the physical dimension is at

ω = 2. Using the fact that4

∮
dτ1 dτ2 dτ3

d

dτ1
(ǫ(τ1 τ2 τ3)D(τ1, τ3)G(x1, x2, x3)) = 0 (2.3)

one may prove that

λ2

2

∮
dτ1dτ3

D(τ2, τ3)

G|τ1=τ2

= −λ
2

4

∮
dτ1 dτ2 dτ3 ǫ(τ1 τ2 τ2) ∂τ1 (D(τ1, τ3)G) . (2.4)

In fact, as shown in [9], on the physical dimension, the l.h.s. of the expression (2.4) (which

is divergent) reduces to exactly minus the contribution of the diagram pictured on the right

3The symbol ǫ(τ1 τ2 τ3) refers to antisymmetric path-ordering. It is given by +1 for τ1 > τ2 > τ3 and is

totally antisymmetric in the τi.
4This is the relation which must be modified for curves which are piecewise defined.
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Figure 3: A Wilson loop composed of two longitudes.

of figure 2. The sum of the two diagrams is therefore given by (calling the contribution of

the second diagram Σ2)

Σ3 + Σ2 = −λ
2

4

∮
dτ1 dτ2 dτ3 ǫ(τ1 τ2 τ3) [D(τ1, τ3) ẋ2 · ∂x1

G− ∂τ1 (D(τ1, τ3)G)] (2.5)

which for the 1/2 BPS circle [9], and for the latitude [30] is easily proven to be zero. As

long as the Wilson loop under consideration is finite at one-loop, i.e.
∮
dτ1 dτ2

D(τ1, τ2)

(x1 − x2)2
= finite (2.6)

it also easy to see that (2.5) is finite. We will discuss this point further in section 2.3.

Our strategy is to evaluate the rainbow/ladders and the quantity (2.5) using numerical

integration, and to compare to the expectation from (1.4). Expanding that expression in

the large-N , small-λ limit, one finds

〈W 〉 = 1 +
λ̂

8
A1(4π −A1) +

λ̂2

192
(A1(4π −A1))

2 + · · · (2.7)

where we have defined λ̂ ≡ λ/(4π2) and where A1 is either of the areas enclosed by the

Wilson loop on S2.

2.1 Two longitudes

We consider the Wilson loop defined by (1.1) consisting of two longitudes separated by an

azimuthal angle δ on S2, as pictured in figure 3. This loop was first constructed in [29] and

it is relatively straightforward to prove that it is indeed captured by (1.4) to first order in

the ’t Hooft coupling directly. The longitudes are given by

xi = (sin t, 0, cos t), 0 ≤ t < π

xi = (− cos δ sin t, − sin δ sin t, cos t), π ≤ t < 2π (2.8)

where the first longitude couples to the scalar field Φ2, and the second to −Φ2 cos δ+Φ1 sin δ.

The combined gauge field and scalar propagator joining two points on the same longitude

is a constant λ/(4π2) × 1/2 = λ̂/2, while that joining the two longitudes is given by

P (t1, t2) = λ̂
−ẋ1 · ẋ2 − cos δ

2(1 − x1 · x2)
= λ̂

cos δ cos t1 cos t2 − sin t1 sin t2 − cos δ

2(1 + cos δ sin t1 sin t2 − cos t1 cos t2)
. (2.9)

– 6 –
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Figure 4: A subset of the two-loop diagrams.

We begin with those rainbow/ladder graphs which do not involve the propagator P (t1, t2);

these are pictured in figure 4. We find that these diagrams yield the following

λ̂2

4

[
2

∫ π

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4

(
1

2

)
2+2

∫ 2π

π
dt1

∫ t1

π
dt2

∫ t2

π
dt3

∫ t3

π
dt4

(
1

2

)
2

+

∫ 2π

π
dt1

∫ t1

π
dt2

∫ π

0

dt3

∫ t3

π
dt4

(
1

2

)
2

]
=
λ̂2

16

[
(2+2)·π

4

4!
+

(
π2

2!

)
2

]
=

5λ̂2

192
π4 (2.10)

where the leading factor of 1/4 comes from the traces over gauge group matrices, while

the 1/4! which comes from the expansion of the Wilson loop to fourth order has been

eliminated by the 4! equivalent orderings of the fields in that expansion. The next class

of two-loop rainbow/ladder diagrams contain the P (t1, t2) propagator and are pictured in

figure 5. We find the result for these diagrams to be

Λ2 ≡ λ̂2

2

∫ 2π

π
dt1

∫ π

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4

(
1

2

)
(P (t1, t4) + P (t1, t2))

+
λ̂2

4

∫ 2π

π
dt1

∫ t1

π
dt2

∫ π

0

dt3

∫ t3

0

dt4 P (t1, t4)P (t2, t3).

(2.11)

There are two checks which we can make on the sum of two-loop rainbow/ladders. The

first is at δ = 0 where the longitudes lie atop one another with opposite orientation. Here

the result should be zero, and is. The second is at δ = π where the longitudes degenerate

to a great circle. Here the result should match that of the 1/2 BPS circle, since there

internal vertex diagrams cancel [9]. One can check that this test is also passed.

The expectation from (2.7) at two-loop order is easily seen to be λ̂2 δ2(2π− δ)2/12. It

is interesting to ask whether or not the sum of two-loop rainbow/ladder diagrams is already

proportional to δ2(2π− δ)2, even without the contribution of the internal vertex diagrams.

Due especially to the last integral in (2.11), we need to resort to numerical integration

in order to answer this question. As we will see the answer is no. The internal vertex

diagrams, however, give a finite contribution which together with the rainbow/ladders,

– 7 –
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Figure 5: A (different) subset of the two-loop diagrams.

Figure 6: Two-loop results for a Wilson loop composed of two longitudes (λ̂ is set to 1). In red

dots the result of numerical integration is shown. In black triangles the expectation from (1.4) is

plotted. On the right data including the result from only rainbow/ladder diagrams (blue squares)

are plotted with the expectation from (1.4) subtracted.

reproduces the prediction from (1.4). Due to the fact that this Wilson loop is piecewise

defined, the interacting diagrams and their divergence cancellation is more subtle than that

presented at the start of this section. We have relegated the details to appendix A. We

find the following result for the finite remainder after the divergence cancellation

Λ3 =− λ̂
2

16

∫ 1

0

dαdβdγδ(1−α−β−γ)
[∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3ǫ(τ2τ3)
B1+B2+B3

∆2

−
∫ 2π

π
dτ1

∫ π

0

dτ2
(1+σ)(2+c1+c2)

[αβ(1+σs1s2−c1c2)+βγ(1 + c2)+αγ(1 + c1)]

] (2.12)

B1 +B2 +B3 =αγ(σ2 − 1) [2s1(c3 − c2) − s1c1(1 − cos τ23)]

+ αγ(σ + 1)(s2 − s3)(c3 − c1)

+ αγ(σ + 1)
[
sin τ+

13 − sin τ+
12 + sin τ23

]

+ αγ(σ + 1) sin τ23(1 − cos τ+
13) + βγ(σ + 1)c1s3(1 − cos τ23)

(2.13)

– 8 –
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where we have introduced some shorthand σ ≡ cos δ, ci ≡ cos τi, si ≡ sin τi, τij ≡ τi − τj,

τ+
ij ≡ τi + τj, and

∆ =αβ(1 + σ sin τ1 sin τ2 − cos τ1 cos τ2) + βγ(1 − cos τ23)

+ αγ(1 + σ sin τ1 sin τ3 − cos τ1 cos τ3).
(2.14)

We have evaluated the complete result 5λ̂2π4/192+Λ2 +Λ3 via numerical integration.

The results are shown in figure 6 for a range of opening angles δ as red dots with estimated

error bars. Also plotted as black triangles is the expectation from (1.4), i.e. λ̂2 δ2(2π −
δ)2/12. On the right the results, including the rainbow/ladder contribution alone (i.e.

5λ̂2π4/192 + Λ2) are plotted with the expectation from (1.4) subtracted. It is clear both

that the rainbow/ladders fail to reproduce the expectation from (1.4), and that the addition

of Λ3, at least for angles δ away from δ = 0, reproduces them excellently. As δ = 0 is

approached the numerical integration is no longer reliable (as evidenced by the growing

error bars). The reasons for this are discussed in section 2.3. We also note from (2.12) that

Λ3 vanishes exactly for δ = π when the longitudes degenerate to a circle; this is a consistency

check against the known vanishing of interacting diagrams for the 1/2 BPS circle [9].

2.2 Wavy latitudes

We now consider (1.1) using a class of closed contours we refer to as “wavy latitudes”.

They are given by

~x(τ) =
(
sin θ(τ) cos τ, sin θ(τ) sin τ, cos θ(τ)

)
, θ(τ) = θ0 +A cosnτ (2.15)

where n is an integer. For A = 0 these loops reduce to the latitudes which were shown

in [24] to be essentially the same (via a conformal transformation) as the 1/4 BPS circle

of Drukker [30], and for which the 1/2 BPS circle is a special case. In figure 7, we have

plotted the curves for θ0 = π/4, and A ranging from 0 to 0.3 for the cases n = 2, 3. The

viewpoint is straight down the north pole of the sphere, i.e. the contours have been (flatly)

projected into the x1-x2 plane. The rainbow/ladder contribution is given by

Σ1 =
λ̂2

4

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4

[
Q(τ1, τ4)Q(τ2, τ3) +Q(τ1, τ2)Q(τ3, τ4)

]
(2.16)

where Q(τ1, τ2) is defined by the integrand in (2.17). We call this contribution the “two-

rung contribution”. At O(λ), there is no need to verify agreement of the wavy latitudes

with (2.7), as this agreement can already be proven for a general contour as explained in

the introduction. That being said, we may continue with the one-loop analysis anyways, as

it serves as a warm-up to the two-loop analysis which follows. Expanding (1.1) to leading

order in the ’t Hooft coupling λ, we find

〈W 〉 = 1 +
λ̂

4

∫
dτ1

∫
dτ2

(ẋ1 · ẋ2)(x1 · x2 − 1) − (x1 · ẋ2)(x2 · ẋ1)

2 (1 − x1 · x2)
(2.17)

where xi = ~x(τi), we have used the fact that x2
i = 1, and we have defined λ̂ ≡ λ/(4π2). It is

not particularly illuminating to substitute the expression for the wavy latitude (2.15) into

– 9 –
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Figure 7: The contours (2.15) are plotted from the view-point straight down the north pole of the

sphere (flat projection). Here θ0 = π/4 while A ranges from 0 to 0.3. On the left n has been set to

2, on the right n = 3.

Figure 8: The coefficient of λ̂ from (2.7) is plotted as black triangles for the wavy latitude with

θ0 = π/4 and “amplitude” A ranging from 0 to 0.3. Also plotted is the analogous term from N = 4

SYM perturbation theory (red dots). As guaranteed by the results of [28], the data coincide.

this expression. Instead we note that for A < θ0 (at A = θ0 the contour self-intersects and

thus develops cusps) the expression (2.17) may be integrated numerically to high accuracy.

The expectation from (2.7), requires the evaluation of

A1 =

∫ 2π

0

dτ
(
1 − cos(θ0 +A cosnτ)

)
. (2.18)

This integral also requires numerical integration, however it may be evaluated with ex-

tremely high accuracy. In figure 8 we have plotted the coefficients of λ̂ from expres-

sions (2.17) and (2.7) for θ0 = π/4 and the “amplitude” A ranging from 0 to 0.3. The data

lie on top of one another, and the error bars lie within the data points.5

5In these expressions there is no dependence on n.
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Figure 9: In the top two graphs, the “two-rung” contribution Σ1/λ̂
2 (see (2.16)) is plotted as red

dots for the contours (2.15) with θ0 = π/4, “amplitude” A ranging from 0 to 0.3, and for n = 2

on the left and n = 3 on the right. Also plotted, as black triangles, is the expectation from (2.7).

In the bottom two graphs, we have replaced Σ1 → Σ1 + Σ2 + Σ3, i.e. the full two-loop result; the

agreement with (2.7) is excellent.

In figure 9 we show the numerical evaluation of the two-rung contribution (see (2.16))

Σ1/λ̂
2 for θ0 = π/4, A ranging from 0 to 0.3, and for n = 2, 3. Also plotted is the

coefficient of λ̂2 expected from (2.7). It is clear that the two-rung diagram alone does not

agree with (2.7), except in the trivial case A = 0 when the regular latitude is recovered.

Also in figure 9, in the bottom two graphs, we show the same analysis, however this time

adding the contribution from Σ2 +Σ3 (see (2.5)). It is seen that within numerical accuracy,

which is excellent, there is agreement with the expectation from (2.7).

2.3 Comments on numerical accuracy

The mechanism whereby the divergence present in (2.5) cancels was discussed in [20]. The

divergence is found by setting the Feynman parameter γ to zero. One then finds6

(Σ2+Σ3)γ=0 =−λ
2

4

∫ 1

0

dα

α(1−α)

∮
dτ1 dτ2 dτ3ǫ(τ1 τ2 τ3) (∂τ2 +∂τ1)

(
D(τ1, τ3)

(x1 − x2)2

)
(2.19)

6The divergent α integral represents an integrable singularity for the other Feynman parameter β.
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Figure 10: Two distinct Wilson loops given by latitudes at polar angles θ1
0

and θ2
0
.

where the derivative in τ2 comes from the first term in (2.5) and the derivative in τ1 from the

second. Migrating these derivatives to the path ordering symbol via integration by parts,

equal and opposite factors of δ(τ1 − τ2) are obtained. Thus in the τ1-τ2 integration there

are logarithmic divergences which cancel between the first and second term. By exploiting

the symmetries of the integration in (2.5) one can express the integrand such that it is

manifestly zero for the case of the 1/2 BPS circle. When a small deformation such as the

amplitude A for the wavy latitude is turned on, the compensating logarithmic divergences

just described become present, but are weighted by a small number which doesn’t compete

with the rest of the integral. For a large enough deformation however, the weighting is

competitive and the error stemming from the numerical integration’s inability to reliably

cancel-out non-converging regions becomes significant. Although slightly modified due to

its piecewise definition, the same comments apply to the case of the two longitudes. This

is why we have been unable to obtain reliable results when δ is near zero. Analyzing the

wavy latitudes for larger n or A similarly leads to poor convergence.

3. Connected correlator

At a given order in perturbation theory, it is generally simpler to calculate a connected

correlator of two Wilson loops as compared to the VEV of a single loop. This fact was

exploited for the 1/2 BPS circle in [4, 5] to check the matrix model conjecture [9, 10] to

third order in the ’t Hooft coupling. We have therefore computed the connected correlator

of two Wilson loops of the variety (1.1), given by two distinct latitudes at polar angles θ1
0, θ

2
0

on S2, see figure 10. The result is compared, in the limit that the latitudes are coincident,

with the computation performed using the reduced 2-d model in light-cone gauge, where

there are only ladder diagrams. It is found that the scaling with the difference between

the two latitude angles h = cos θ1
0 − cos θ2

0 does not agree between these two calculations.

As discussed in the introduction, the reduced 2-d model light-cone gauge propagator

joining the two latitudes has the following structure

D2d = D4d + iD0 (3.1)

where D4d is the combined gauge and scalar field propagator joining the latitudes in N = 4

supersymmetric Yang-Mills theory in four dimensions, while D0 is an extra piece (here pro-

portional to the difference in polar angles, i.e. h). Working with gauge group SU(N), and
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in the large-N limit, it is trivial to show equivalence between the connected correlator in

the 2-d and 4-d theories at order λ2. This is because in both cases, only the 2-rung ladder

diagram

contributes. Because of the form of D0, it is then straight-forward to see that its presence

integrates to zero. The real test comes at the next order in the ’t Hooft coupling. At this

level one can show that, should the reduced 2-d model capture the physics

= + + +

where, on the l.h.s. we have a contribution which stems from a 2-d model diagram with

three propagators, however with two insertions of the imaginary part of the propagator

(i.e. D0), and on the r.h.s. we have a sum of interacting diagrams of the 4-d theory, N = 4

SYM, and where all possible variants including scalar fields are implied. The l.h.s. con-

tribution may be obtained precisely, as the integrals over the points on the latitudes are

evaluable. On the r.h.s. we find a by now well-known divergence cancellation between the

last two diagrams. We can then express everything in terms of finite integrals over the

bulk space-time interaction points. These in turn can be analyzed in the limit where the

two latitudes are coincident. The results are that

+ + + ∼ |h|

while,

∼ |h|2

thereby precluding agreement between the light-cone 2-d, and the 4-d theory.

3.1 Preliminaries

The latitudes we consider are given by

W =
1

N
TrP exp

∮
dτ
(
i ẋµAµ + |ẋ|ΘI ΦI

)
, (3.2)

where

xµ = (sθ0 cos τ, sθ0 sin τ, cθ0), ΘI = (−cθ0 cos τ,−cθ0 sin τ, sθ0), (3.3)
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and where we have used the shorthand cθ0 ≡ cos θ0 and similarly for sin. The combined

gauge field and scalar propagator joining the two latitudes (in Feynman gauge) is then

given by

D12 ≡ g2

4π2

−ẋ1 · ẋ2 + |ẋ1||ẋ2|Θ1 · Θ2

(x1 − x2)2
=

g2

4π2

sθ1
0sθ

2
0

[
cos τ12(cθ

1
0cθ

2
0 − 1) + sθ1

0sθ
2
0

]

2
(
1 − cθ1

0cθ
2
0 − sθ1

0sθ
2
0 cos τ12

) . (3.4)

This “loop-to-loop propagator” is more compactly expressed as

D12 =
g2

4π2

(1 − cθ1
0cθ

2
0)

2

(
cos τ12 + Λ

cos τ12 + Λ−1

)
, Λ ≡ sθ1

0sθ
2
0

cθ1
0cθ

2
0 − 1

. (3.5)

We are interested also in a reduced 2-d theory living on an S2 parametrized by the complex

variable z such that

xµ =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1 − zz̄) (3.6)

and so z = eiτ tan(θ0/2) describes our latitudes. This theory is pure gauge. Its fields are

Az and Az̄. In the light-cone gauge Az̄ = 0 while [28, 29]

〈Az(z)Az(w)〉 =
2g2

2d

π

1

(1 + zz̄)

1

(1 + ww̄)

z̄ − w̄

z −w
, (3.7)

where g2
2d

= −g2/(4π). In this theory we may also construct the standard Wilson loop
1

N TrP exp i
∮
Adx. The loop-to-loop propagator here is

D12 = i2ż1ż2〈Az(z1)Az(z2)〉 =
2g2

2d

π

sθ1
0sθ

2
0

4

(
λ2

1e
−iτ12 + λ2

2e
iτ12 − 2λ1λ2

λ2
1 + λ2

2 − 2λ1λ2 cos τ12

)
(3.8)

where λi = tan(θi
0/2). This can be put into a much more suggestive form

D12 =
g2

4π2

(1 − cθ1
0cθ

2
0)

2

(
cos τ12 + Λ

cos τ12 + Λ−1

)
+ i

g2

4π2

(cθ1
0 − cθ2

0)

2

(
sin τ12

cos τ12 + Λ−1

)
(3.9)

where we see that the real component is exactly the loop-to-loop propagator in the 4-d

theory, i.e. D12 defined in (3.4).

3.2 A relation between diagrams

We are interested in calculating the connected correlator between two Wilson latitudes,

both in the 2-d and 4-d theory. We begin with the 2-d calculation. We perform calculations

using the gauge group SU(N), in the large N limit. Therefore we are interested only in

planar diagrams, while single insertions on a Wilson loop vanish since the generators of

SU(N) are traceless. The 2-d theory, being in the light-cone gauge, is free of interactions -

it has only ladder diagrams. In fact there are three 2-d ladder diagrams which are trivially

equivalent to those of the 4-d theory. These are pictured in figure 11. In the first two

diagrams, due to the fact that at least one of the loops has only two insertions, and due to

the cyclicity of the trace, the imaginary component of (3.9) integrates to zero since

∫ 2π

0

dθ
sin θ

cos θ + Λ−1
= 0. (3.10)
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Figure 11: These 2-d theory diagrams are trivially equivalent to their 4-d counterparts.

Similarly, in the last diagram, any insertions of the imaginary component of the loop-to-

loop propagator vanish. Therefore only the real component of the propagator contributes

- giving precisely the result for the 4-d theory. At order λ2 the only non-vanishing planar

diagram in either theory is the two-rung ladder (pictured in figure 11 for the 2-d theory).

Thus the two theories agree at this level, however this is a direct result of the one-loop

proof given in [28, 29].

Up to order λ3 there is only one other planar ladder diagram - the triple rung. The

triple rung is given by

=
3N3

8N2

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ 2π

0

dσ1

∫ σ1

0

dσ2

∫ σ2

0

dσ3 Dσ1 τ3 Dσ1 τ1 Dσ1 τ2 .

Upon substitution of the 2-d theory propagator (3.9), we see that the terms involving an

odd number of insertions of the imaginary component vanish, whereas clearly three inser-

tions of the real component gives exactly the triple rung in the 4-d theory. We are therefore

left with the following equality, should the 2-d theory truly agree with the 4-d

III=
3π

4N2

(
g2N

8π2

)
3i2(cθ1

0−cθ2
0)

2(1−cθ1
0cθ

2
0)

∫ 2π

0

dφ

∫ 2π

0

dθ1

∫ 2π

0

dθ2

∫ θ1

0

dψ1

∫ θ2

0

dψ2

×
{(

cos(φ+θ2)+Λ

cos(φ+θ2)+Λ−1

)(
sin(φ+ψ2−θ1)

cos(φ+ψ2−θ1)+Λ−1

)(
sin(φ−ψ1)

cos(φ−ψ1)+Λ−1

)

+

(
sin(φ+θ2)

cos(φ+θ2)+Λ−1

)(
cos(φ+ψ2−θ1)+Λ

cos(φ+ψ2−θ1)+Λ−1

)(
sin(φ−ψ1)

cos(φ−ψ1)+Λ−1

)

+

(
sin(φ+θ2)

cos(φ+θ2)+Λ−1

)(
sin(φ+ψ2−θ1)

cos(φ+ψ2−θ1)+Λ−1

)(
cos(φ−ψ1)+Λ

cos(φ−ψ1)+Λ−1

)}

= Sum of interacting diagrams of 4-d theory: X, H, IY, and 2-rung bubble

(3.11)

i.e., the triple-rung with two insertions of the imaginary component of the loop-to-loop

propagator ought to equal the sum of all remaining diagrams of the 4-d theory - the so-

called X, H, IY, and 1-loop corrected two-rung ladder (or “2-rung bubble”) diagrams. We

visit these diagrams individually in appendix B; they are depicted in figure 15.

The integrations in (3.11) can be carried out rather simply because of the happy fact

that
sinφ

cosφ+ Λ−1
= −∂φ ln

(
−Λ−1 − cosφ

)
(3.12)
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where we have ensured that the argument of the ln is always positive. The result is

III =
3π

4N2

(
g2N

8π2

)3

i2 (cθ1
0 − cθ2

0)
2
(
1 − cθ1

0cθ
2
0 − |cθ1

0 − cθ2
0|
)
(2π)3

×
[
−2Li2

(
r2 − 1

r2

)
− ln2

(r
2

)
+ 2 ln r2 ln

r2 − 1

r2
+
π2

3

] (3.13)

where

r ≡ 1 − cθ1
0cθ

2
0 + |cθ1

0 − cθ2
0|

sθ1
0sθ

2
0

, r−1 =
1 − cθ1

0cθ
2
0 − |cθ1

0 − cθ2
0|

sθ1
0sθ

2
0

,

Λ−1 = −1

2

(
r + r−1

)
. (3.14)

We are therefore interested in whether or not this expression can be recovered by the sum

of interacting diagrams of the 4-d theory.

3.3 Results

We will investigate the proposed relation (3.11) in the limit in which the two latitudes are

coincident. Looking at (3.13) we see that in this limit (where r → 1)

III ≃ − 3π

4N2

(
λ

4π

)3

s2θ0 (cθ1
0 − cθ2

0)
2

[
− ln2 2 +

π2

3

]
∼ |h|2. (3.15)

The evaluation of the X, H, and IY diagrams are collected in appendix B. The results in

the coincident limit θ1
0 ≃ θ2

0 ≃ θ0 are as follows

=
λ3

8N2

1

32
s4θ0|h|, =Hρ+Hi1+Hi2,

+ = (iy3)1+(iy3)2,

where

Hρ =
λ3

N2

|h|s3θ0
4096π4

∫
∞

−∞

dρdρ̄dw2dw3dz2dz3

[
(w2

2+w2
3)(2 cot θ0ρ+cot2 θ0)−ρ2(1−2w2)

]

(
(ρ+cot θ0)

√
R1(w)+ρ

√
R2(w)

)
R1(w)R2(w)

× 1√
(ρ−ρ̄)2+(w2−z2)2+(w3−z3)2

[
(z2

2 +z2
3)(2 cot θ0ρ̄+cot2 θ0)−ρ̄2(1−2z2)

]

(
(ρ̄+cot θ0)

√
R1(z)+ρ̄

√
R2(z)

)
R1(z)R2(z)

, (3.16)

Hi1 =
λ3

N2

|h|s3θ0
4096π4

∫
∞

−∞

dρdρ̄dw2dw3dz2dz3

[
(ρ2+w2

3)(1−2w2)−w2
2 cot θ0(cot θ0+2ρ)

]

(
(w2−1)

√
R1(w)+w2

√
R2(w)

)
R1(w)R2(w)

× 1√
(ρ−ρ̄)2+(w2−z2)2+(w3−z3)2

[
(ρ̄2+z2

3)(1−2z2)−z2
2 cot θ0(cot θ0+2ρ̄)

]

(
(z2−1)

√
R1(z)+z2

√
R2(z)

)
R1(z)R2(z)

, (3.17)
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Hi2 =
λ3

N2

|h| s3θ0
4096π4

∫
∞

−∞

dρ dρ̄ dw2 dw3 dz2 dz3
w3

(
1 + cot2 θ0 + 2ρ cot θ0 − 2w2

)

(√
R1(w) +

√
R2(w)

)
R1(w)R2(w)

× 1√
(ρ− ρ̄)2 + (w2 − z2)2 + (w3 − z3)2

z3

(
1 + cot2 θ0 + 2ρ̄ cot θ0 − 2 z2

)

(√
R1(z) +

√
R2(z)

)
R1(z)R2(z)

, (3.18)

(iy3)1 =
λ3

N2

s2θ0cθ0
256π3

|h|
∫

∞

−∞

dρdw2dw3

cot θ0(ρ
2−w2

2−w2
3)−2ρw2+ρ(1+cot2 θ0)

R1(w)3/2R2(w)3/2
, (3.19)

(iy3)2 = − λ3

N2

s2θ0cθ0
256π3

|h|
∫

∞

−∞

dρ dw2 dw3 ln
(
ρ2 + w2

2 + w2
3

)

×ρ(ρ
2 + w2

2 + w2
3) + cot θ0(3ρ

2 + w2
2 + w2

3) − 2w2ρ+ ρ(1 + cot2 θ0)

R1(w)3/2R2(w)3/2
. (3.20)

where

R1(w) ≡ ρ2 + w2
2 + w2

3, R2(w) ≡ (ρ+ cot θ0)
2 + (w2 − 1)2 + w2

3. (3.21)

The simplest way of seeing that these contributions do not add to zero is to take the special

case θ0 = π/2. At this value of coincident latitudes, the (iy3)1 and (iy3)2 contributions

vanish individually. Then one can further show that the Hρ, Hi1 , and Hi2 contributions

are individually positive. Since the X contribution is clearly positive there can be no

cancellation. We have therefore found that the 2-d reduced model in light-cone gauge does

not agree with the N = 4 SYM calculation.

4. Discussion

The stunning agreement found in section 2 for the VEV of a single Wilson loop at O(λ2)

is the result of an intriguing cancellation of interacting Feynman diagrams with rain-

bow/ladders. It certainly points to the capturing of these loops by a reduced model, which

for single Wilson loop VEV’s agrees with the proposal made in [29]. It is therefore curious

that the connected correlator seems not to be captured by an analogous computation.

As discussed in the introduction, it is not clear that a calculation in the reduced 2-d

model in another gauge might not produce a different result from (3.13) for the connected

correlator; of course it would require a calculation on the order of complexity carried out

in the N = 4 theory here to answer that question. If it is true that the result (3.13) is

gauge invariant, then it is interesting to ask whether or not some kind of matrix model

might still capture the physics. To answer this question, a more careful analysis than

the one carried out here would be required. Specifically one would require the explicit

evaluation of the ladder diagrams equivalent between the 2-d reduced model and N = 4

SYM, and which therefore canceled each other out in our analysis.7 One could then try

various guesses for matrix models, in the same spirit as [5], where the Hermitian matrix

model describing the 1/2 BPS circle was shown to capture coincident loops to third order

7Further, the non-planar contributions could also be considered.
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in the ’t Hooft coupling. One could also attempt to generalize the calculation of Bassetto

and Griguolo [32] to the case of the connected correlator of two Wilson loops and compare

against that result.

There are also further analyses which could be carried out. One of these is to consider

the connected correlator in the limit as one of the latitudes shrinks to a point. A similar

limit was taken in the work [5], for two 1/2 BPS circles. There it was shown that the

shrunken Wilson loop is given by a sum of local operators, both protected and unprotected

by supersymmetry. The unprotected operators lead to terms which diverge as the logarithm

of the radius of the shrinking loop; these logarithms arise from the interacting graphs and

allow the determination of the operator’s anomalous dimension at first order in the ’t Hooft

coupling. It would be interesting to repeat this analysis using the results collected here; we

leave this to a further publication. It would also be interesting to compute the connected

correlator at strong coupling, using string theory; there two-point functions with protected

operators may be accessible [19 – 22]. If so, the summation of ladder diagrams along the

lines of [20, 22] could be attempted in the gauge theory and compared.
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A. Longitudes: divergence cancellation

It is known that the two-loop diagrams with internal vertices cancel-out for the 1/2 BPS

circle. However, here, in the case of two longitudes, we will not find the same cancellation.

We find a finite remainder, which is zero in the δ = π limit. To begin, we re-cap the

cancellation mechanism for the 1/2 BPS circle. Equation (28) of [9] gives the contribution

from the triple vertex diagram as

Σ3 =λ2 Γ(2ω − 2)

22ω+5π2ω

∫ 1

0

dα dβ dγ (αβγ)ω−2δ(1 − α− β − γ)

×
∮
dτ1 dτ2 dτ3

ǫ(τ1 τ2 τ3)(1 − cos τ13)
(
α(1 − α) sin τ12 + αγ sin τ23

)
[
αβ(1 − cos τ12) + βγ(1 − cos τ23) + γα(1 − cos τ13)

]2ω−2
.

(A.1)

By using the identity
∮
dτ1 dτ2 dτ3

∂

∂τ1

ǫ(τ1 τ2 τ3)(1 − cos τ13)

∆2ω−3
= 0 (A.2)

where ∆ = αβ(1 − cos τ12) + βγ(1 − cos τ23) + γα(1 − cos τ13), and ω = 2 on the physical

dimension, one may relate Σ3 to the one-loop-corrected, single-rung ladder diagram, and

an extra piece which vanishes on the physical dimension.
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Figure 12: Simplest class of triple vertex diagrams for the two longitudes. The solid lines refer to

both scalars and gauge fields.

A.1 Insertions on a single longitude

The simplest class of triple vertex diagrams for the two longitudes are pictured in figure 12.

We can use (A.1) for these diagrams as well, the only difference being the range of the

loop parameters, which invalidates (A.2). This means that after the cancellation of the

self-energy diagrams shown schematically in figure 12, there is a finite quantity left-over.

If we take the range of the τi to be between 0 and π, then we have that the r.h.s. of (A.2)

is no longer zero but (under integration over α, β, γ)

∫ π

0

dτ2

∫ τ2

0

dτ3

{
cos τ3 − cos τ2

[αβ(1 + cos τ2) + βγ(1 − cos τ23) + γα(1 + cos τ3)]
2ω−3

+
cos τ3 − cos τ2

[αβ(1 − cos τ2) + βγ(1 − cos τ23) + γα(1 − cos τ3)]
2ω−3

}
.

(A.3)

The complement of this contribution, where the loop parameters travel between π and 2π, is

∫ 2π

π
dτ2

∫ τ2

π
dτ3

{
− cos τ3 + cos τ2

[αβ(1 − cos τ2) + βγ(1 − cos τ23) + γα(1 − cos τ3)]
2ω−3

+
− cos τ3 + cos τ2

[αβ(1 + cos τ2) + βγ(1 − cos τ23) + γα(1 + cos τ3)]
2ω−3

}
.

(A.4)

By shifting the loop parameters by π in (A.4) we find that it is just equal to (A.3). We

will see that these quantities are removed when we consider insertions between the two

longitudes.

A.2 Insertions between the two longitudes

The next class of triple vertex diagrams are those that connect the two longitudes. In

figure 13 we have shown those with two insertions on the 0 → π contour, however we must

equally consider those with two insertions on the opposite contour. These diagrams can

– 19 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
7

Figure 13: Triple vertex diagrams which connect two longitudes. These diagrams do not cancel

completely against the diagram shown in figure 14.

essentially be “read-off” from (A.1). The results are

Σ3 =
λ2

4

∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3 ǫ(τ2 τ3)

{
(ẏ1 · ẋ2 + cos δ) ẋ3 · (∂x2

− ∂y1
)

+ (ẋ2 · ẋ3 − 1) ẏ1 · ∂x3

}
G(y1, x2, x3)

− λ2

4

∫ 2π

π
dτ1

∫ 2π

π
dτ2

∫ π

0

dτ3 ǫ(τ1 τ2)

{
(ẏ2 · ẋ3 + cos δ) ẏ1 · (∂y2

− ∂x3
)

+ (ẏ1 · ẏ2 − 1) ẋ3 · ∂y1

}
G(y1, y2, x3)

(A.5)

where

G(y1, x2, x3) =
Γ(2ω − 3)

22ω+3π2ω

∫ 1

0

dα dβ dγ (αβγ)ω−2δ(1 − α− β − γ)
1

∆2ω−3
,

G(y1, y2, x3) =
Γ(2ω − 3)

22ω+3π2ω

∫ 1

0

dα dβ dγ (αβγ)ω−2δ(1 − α− β − γ)
1

∆̃2ω−3

where

∆ =αβ(1 + σ sin τ1 sin τ2 − cos τ1 cos τ2)

+ βγ(1 − cos τ23) + αγ(1 + σ sin τ1 sin τ3 − cos τ1 cos τ3)

∆̃ =αβ(1 − cos τ12) + βγ(1 + σ sin τ2 sin τ3 − cos τ2 cos τ3)

+ αγ(1 + σ sin τ1 sin τ3 − cos τ1 cos τ3)

(A.6)

and where σ ≡ cos δ. In fact the second expression is just equal to the first, and so we are

free to take twice the first expression.

Our strategy will be to generalize the mechanism used for the 1/2 BPS circle, described

under equation (A.2), to the present case. We will be looking to cancel out the divergent

diagram shown in figure 14. This diagram gives the following contribution (see equation

(12) of [9])

− λ2Γ2(ω − 1)

128π2ω(2−ω)(2ω−3)
2

∫ 2π

π
dt1

∫ π

0

dt2
cos δ cos t1 cos t2−sin t1 sin t2 − cos δ

[2(1+cos δ sin t1 sin t2−cos t1 cos t2)]
2ω−3

. (A.7)
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Figure 14: The one-loop-corrected one rung ladder; it is divergent and must be cancelled by the

diagrams shown in figure 13.

Therefore we will consider

∂τ3

(σ cos τ1 cos τ3 − σ − sin τ1 sin τ3)

∆2ω−3
(A.8)

=
(2ω−3)

∆2ω−2
[σ cos τ1 cos τ3−σ−sin τ1 sin τ3][βγ sin τ23−αγ(σ sin τ1 cos τ3+cos τ1 sin τ3)]

+
1

∆2ω−2
[∆] [− sin τ1 cos τ3 − σ cos τ1 sin τ3]

where ∆ = αβ(1 + σ sin τ1 sin τ2 − cos τ1 cos τ2) + βγ(1 − cos τ23) + αγ(1 + σ sin τ1 sin τ3 −
cos τ1 cos τ3). The first contribution from the integrand in (A.5) is

A1 = (ẏ1 · ẋ2 + σ) ẋ3 · ∂x2

1

∆2ω−3
= (3 − 2ω)

[
σ(1 − cos τ1 cos τ2) + sin τ1 sin τ2

]

×
[
β(α+ γ) sin τ23 + αβ (σ sin τ1 cos τ3 + cos τ1 sin τ3)

] 1

∆2ω−2
.

(A.9)

We use (A.8) to derive the following relation

N
∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3 ǫ(τ2 τ3)A1

= N (3 − 2ω)

[∫ 2π

π
dτ1

∫ π

0

dτ2
−σ − σc1

∆2ω−3|τ3=π
−
∫ 2π

π
dτ1

∫ π

0

dτ2
σ − σc1

∆2ω−3|τ3=0

]

+ N (3 − 2ω)

∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3 ǫ(τ2 τ3)
B1

∆2ω−2

− 2λ2 Γ(2ω−3)

22ω+3π2ω

Γ2(ω−1)Γ(2−ω)

Γ(2ω−2)Γ(5−ω)

∫ 2π

π
dτ1

∫ π

0

dτ2
σ − σc1c2 + s1s2

[(1+σs1s1−c1c2)]2ω−3

(A.10)

where ci ≡ cos τi, si ≡ sin τi, finite terms multiplied by (2ω − 4) have been suppressed, B1

is given along with similar contributions from the other portions of the integrand in (A.5)

in (A.19), and we have introduced the notation

N ≡ λ2

2

Γ(2ω − 3)

22ω+3π2ω

∫ 1

0

dα dβ dγ δ(1 − α− β − γ)(αβγ)ω−2. (A.11)

In the limit ω → 2 the singular contribution in the last line of (A.10) cancels (A.7) exactly.

The first two terms represent finite quantities left over from this cancellation. We may now
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continue and derive similar identities for the remaining terms in (A.5). Continuing with

the second term in the first integral of (A.5)

A2 = − (ẏ1 · ẋ2 + σ) ẋ3 · ∂y1

1

∆2ω−3
= (3 − 2ω) [σ(1 − cos τ1 cos τ2) + sin τ1 sin τ2]

×[αβ sin τ23+α(β+γ)(σ sin τ1 cos τ3+cos τ1 sin τ3)]
1

∆2ω−2

(A.12)

we use the derivative

−∂τ3

(1−cos τ23)

∆2ω−3
=−(2ω−3)

∆2ω−2
[1−cos τ23][βγ sin τ23−αγ(σ sin τ1 cos τ3+cos τ1 sin τ3)]

+
1

∆2ω−2
[∆] [sin τ23]

(A.13)

to derive

N
∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3 ǫ(τ2 τ3)A2

= N (3 − 2ω)

∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3 ǫ(τ2 τ3)
B2

∆2ω−2

+N (3−2ω)

[∫ 2π

π
dτ1

∫ π

0

dτ2
−(1+c2)

∆2ω−3|τ3=π
−
∫ 2π

π
dτ1

∫ π

0

dτ2
1−c2

∆2ω−3|τ3=0

]
.

(A.14)

Similarly for the third term in (A.5), we have

A3 = (ẋ2 · ẋ3 − 1) ẏ1 · ∂x3

1

∆2ω−3
= (3 − 2ω)

[
cos τ23 − 1

]

× [βγ(σ cos τ1 sin τ2+sin τ1 cos τ2)−γ(α+β)(σ cos τ1 sin τ3+sin τ1 cos τ3)]
1

∆2ω−2

(A.15)

and we use the derivative

−∂τ1

(1 − cos τ13)

∆2ω−3
(A.16)

=
(2ω−3)

∆2ω−2
[1−cos τ13] [αβ(σ cos τ1 sin τ2+sin τ1 cos τ2)+αγ(σ cos τ1 sin τ3+sin τ1 cos τ3)]

+
1

∆2ω−2
[∆] [− sin τ13] .

We find

N
∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3ǫ(τ2τ3)A3 = N (3−2ω)

∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3ǫ(τ2τ3)
B3

∆2ω−2

+N (3−2ω)

[∫ π

0

dτ2

∫ π

0

dτ3ǫ(τ2τ3)
(1−c3)

∆2ω−3|τ3=2π

−
∫ π

0

dτ2

∫ π

0

dτ3ǫ(τ2τ3)
(1+c3)

∆2ω−3|τ3=π

]
.

(A.17)
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Figure 15: The interacting diagrams of the 4-d theory which contribute to the planar, connected

correlator of two Wilson loops. The gauge field lines are understood to also represent scalars - as

allowed by the couplings of N = 4 SYM.

The last line above cancels the contributions of (A.3) and (A.4) exactly. We are now in a

position to quote the finite result of the internal vertex diagrams, it is given by

Λ3 = − λ̂
2

16

∫ 1

0

dαdβdγδ(1−α−β−γ)
[∫ 2π

π
dτ1

∫ π

0

dτ2

∫ π

0

dτ3ǫ(τ2τ3)
B1+B2+B3

∆2

−
∫ 2π

π
dτ1

∫ π

0

dτ2
(1 + σ)(2 + c1 + c2)

[αβ(1+σs1s2−c1c2)+βγ(1+c2)+αγ(1+c1)]

] (A.18)

where we have combined the surface terms from (A.10) and (A.14). A simple expression

for the sum of B1, B2, and B3 is given by

B1 +B2 +B3 =αγ(σ2 − 1) [2s1(c3 − c2) − s1c1(1 − cos τ23)]

+ αγ(σ + 1)(s2 − s3)(c3 − c1)

+ αγ(σ + 1)
[
sin τ+

13 − sin τ+
12 + sin τ23

]

+ αγ(σ + 1) sin τ23(1 − cos τ+
13) + βγ(σ + 1)c1s3(1 − cos τ23)

(A.19)

where we have introduced some shorthand τij ≡ τi − τj, τ
+
ij ≡ τi + τj. It is clear that at

δ = π, where σ = −1, Λ3 is explicitly zero, as it must be, in order to coincide with the

known results of the 1/2 BPS circle.

B. Connected correlator: interacting diagrams

In this section we undertake the calculation of the diagrams depicted8 in figure 15, in the 4-d

theory, i.e. N = 4 SYM. We employ the Euclidean action in Feynman gauge, the details of

which (along with the conventions used here) are to be found in [4] and [9]. We will find that

there is a divergence cancellation between the IY and 2-rung bubble, completely analogous

to the one found for the case of two 1/2 BPS Wilson circles in [4]. The X and H diagrams will

also yield extremely similar - but not exactly the same - results as those found in [4] for the

1/2 BPS case. Due to the great similarity between the following calculation and that per-

formed in [4], we will not be overly explicit. The reader is referred to [4] for further details.

The general strategy is to perform the integrals over the Wilson loop contours them-

selves, leaving the bulk integrations over the space-time points of interaction unevaluated.

8There is also a second IY diagram, where the two latitudes are exchanged.
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We will use the notation x(τ) and y(σ) to refer to the parametrizations of the two Wilson

loops at polar angles θ1
0 and θ2

0 respectively, along with their associated scalar paths Θx(τ)

and Θy(σ). We will find the following integrals repeatedly useful

I(θ0) ≡
∫ 2π

0

dτ
1

a+ b cos τ + c sin τ
=

2π√
a2 − (b2 + c2)

Ic(θ0) ≡
∫ 2π

0

dτ
cos τ

a+ b cos τ + c sin τ
=

2π b
(√

a2 − (b2 + c2) − a
)

√
a2 − (b2 + c2) (b2 + c2)

(B.1)

Is(θ0) ≡
∫ 2π

0

dτ
sin τ

a+ b cos τ + c sin τ
=

2π c
(√

a2 − (b2 + c2) − a
)

√
a2 − (b2 + c2) (b2 + c2)

where

a = ρ2 + w2
4 + s2θ0 + (w3 − cθ0)

2, b = −2 sθ0w0, c = −2 sθ0w1 (B.2)

and ρ2 = w2
0 + w2

1, where w = (w0, w1, w2, w3) is a space-time interaction point. We will

also make use of some further shorthand

R1 ≡ ρ2 + w2
2 + w2

3, R2 ≡ (ρ+ cot θ0)
2 + (w2 − 1)2 + w2

3. (B.3)

B.1 X diagram

The X-diagram is given by

X =
8g6N3

43N2

∫ 2π

0

dτ1

∫ 2π

0

dτ2

∫ 2π

0

dσ1

∫ 2π

0

dσ2

×
[
(ẋ1 · ẏ2 − Θx1

· Θy2
|ẋ1||ẏ2|) (ẋ2 · ẏ1 − Θx2

· Θy1
|ẋ2||ẏ1|)

− (ẋ1 · ẋ2 − Θx1
· Θx2

|ẋ1||ẋ2|) (ẏ1 · ẏ2 − Θy1
· Θy2

|ẏ1||ẏ2|)
]

×
(

1

4π2

)4 ∫ d4w

(x1 − w)2(x2 − w)2(y1 − w)2(y2 − w)2

(B.4)

Evaluating the integrals over τ1, τ2, σ1, σ2, we have

X=
8g6N3

43N2

(
1

4π2

)4∫
d4w

{
s2θ1

0s
2θ2

0(1−cθ1
0cθ

2
0)

2
[
Ic(θ

1
0)Ic(θ

2
0)+Is(θ

1
0)Is(θ

2
0)
]2

−2s3θ1
0s

3θ2
0(1−cθ1

0cθ
2
0)I(θ

1
0)I(θ

2
0)
[
Ic(θ

1
0)Ic(θ

2
0)+Is(θ

1
0)Is(θ

2
0)
]

+s4θ1
0s

4θ2
0

(
I2(θ2

0)
[
I2
c (θ1

0)+I
2
s (θ1

0)
]
+I2(θ1

0)
[
I2
c (θ2

0)+I
2
s (θ2

0)
])

− s4θ1
0s

4θ2
0

(
I2
c (θ1

0)+I
2
s (θ1

0)
) (
I2
c (θ2

0)+I
2
s (θ2

0)
)
}

(B.5)
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where the I, Ic, Is are given by (B.1), (B.2). In the coincident limit, when θ1
0 → θ2

0, one finds

X ≃ λ3

8N2

(
1

4π2

)4

8π8s4θ0 |cθ1
0 − cθ2

0|

=
λ3

8N2

1

32
s4θ0 |h|.

(B.6)

B.2 H diagram

The H diagram is most compactly expressed in terms of an extended notation

ẋM ≡ (ẋµ;−i|ẋ|ΘI), ∂xM ≡ (∂xµ ; 0) (B.7)

with µ = 0, . . . , 3 and I = 4, . . . , 9, so that

ẋM = sθ0 (−sτ, cτ, 0, 0; i cθ0 cτ, i cθ0 sτ, −i sθ0, 0, 0, 0). (B.8)

The contribution of this diagram is given by

H =
λ3

8N2

(
1

4π2

)5 ∫
d4w

∫
d4z

HM (w)HM (z)

(w − z)2
(B.9)

where

HM (w)≡
∫ 2π

0

dτ

∫ 2π

0

dσ
[
2ẏM (ẋ·∂y)−2ẋM (ẏ ·∂x)+[ẋ · ẏ−Θx ·Θy|ẋ||ẏ|]

(
∂xM −∂yM

)]

× 1

(x− w)2(y − w)2

(B.10)

and x = x(τ) = (sθ1
0cτ, sθ

1
0sτ, cθ

1
0), y = y(σ) = (sθ2

0cσ, sθ
2
0sσ, cθ

2
0), etc. One finds

H4(w) = −2i sθ1
0sθ

2
0(cθ

1
0 − cθ2

0)
(
Is(θ

2
0)
(
∂w0

Ic(θ
1
0)
)
− Ic(θ

2
0)
(
∂w0

Is(θ
1
0)
))

H5(w) = −2i sθ1
0sθ

2
0(cθ

1
0 − cθ2

0)
(
Is(θ

2
0)
(
∂w1

Ic(θ
1
0)
)
− Ic(θ

2
0)
(
∂w1

Is(θ
1
0)
))

(B.11)

H6(w) = 0

Hµ(w) = sθ1
0sθ

2
0(1 − cθ1

0cθ
2
0)
[
Ic(θ

1
0)
(
∂wµIc(θ

2
0)
)
− Ic(θ

2
0)
(
∂wµIc(θ

1
0)
)

+Is(θ
1
0)
(
∂wµIs(θ

2
0)
)
−Is(θ2

0)
(
∂wµIs(θ

1
0)
)]

(B.12)

−s2θ1
0s

2θ2
0

[
I(θ1

0)
(
∂wµI(θ

2
0)
)
− I(θ2

0)
(
∂wµI(θ

1
0)
)]
.

Taking the coincident limit, we find that HI leads to subleading terms while H0,1 leads to

the contribution Hρ below and H3,4 lead to the contributions Hi1 and Hi2. The second

space-time interaction point is given by z = (ρ̄û, z2, z3), where û is a unit two-vector.

Hρ =
λ3

N2

|h|s3θ0
4096π4

∫
∞

−∞

dρdρ̄dw2dw3dz2dz3

[
(w2

2+w2
3)(2 cot θ0ρ+cot2 θ0)−ρ2(1−2w2)

]

(
(ρ+cot θ0)

√
R1(w)+ρ

√
R2(w)

)
R1(w)R2(w)

× 1√
(ρ−ρ̄)2+(w2−z2)2+(w3−z3)2

[
(z2

2 +z2
3)(2 cot θ0ρ̄+cot2 θ0)−ρ̄2(1−2z2)

]

(
(ρ̄+cot θ0)

√
R1(z)+ρ̄

√
R2(z)

)
R1(z)R2(z)

, (B.13)
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Hi1 =
λ3

N2

|h|s3θ0
4096π4

∫
∞

−∞

dρdρ̄dw2dw3dz2dz3

[
(ρ2+w2

3)(1−2w2)−w2
2 cot θ0(cot θ0+2ρ)

]

(
(w2−1)

√
R1(w)+w2

√
R2(w)

)
R1(w)R2(w)

× 1√
(ρ−ρ̄)2+(w2−z2)2+(w3−z3)2

[
(ρ̄2+z2

3)(1−2z2)−z2
2 cot θ0(cot θ0+2ρ̄)

]

(
(z2−1)

√
R1(z)+z2

√
R2(z)

)
R1(z)R2(z)

, (B.14)

Hi2 =
λ3

N2

|h| s3θ0
4096π4

∫
∞

−∞

dρ dρ̄ dw2 dw3 dz2 dz3
w3

(
1 + cot2 θ0 + 2ρ cot θ0 − 2w2

)

(√
R1(w) +

√
R2(w)

)
R1(w)R2(w)

× 1√
(ρ− ρ̄)2 + (w2 − z2)2 + (w3 − z3)2

z3

(
1 + cot2 θ0 + 2ρ̄ cot θ0 − 2 z2

)

(√
R1(z) +

√
R2(z)

)
R1(z)R2(z)

, (B.15)

B.3 IY and two-rung bubble divergence cancellation

In this subsection we will demonstrate the cancellation of the divergence stemming from

the two-rung bubble against the divergent part of the IY diagram. The finite parts left-over

from this cancellation are calculated. The strategy follows [4] closely; Feynman parameters

are introduced in favour of bulk integrations in order to demonstrate the cancellation, then

the finite left-overs are re-cast in terms of bulk integrations.

The IY diagram is given by

IY =
λ3

8N2

∫ 2π

0

dϑF(ϑ)

∮
dτ1 dτ2 dσ1E(τ1 τ2)

{
D(τ1, σ1) [ẋ2 · ∂y1

− ẋ2 · ∂x1
]

+D(τ1, τ2) ẏ1 · ∂x1

}
G(x1, x2, y1)

(B.16)

where

F(ϑ) = −(1 − cθ1
0cθ

2
0)

8π2

cos ϑ+ Λ

cos ϑ+ 1
Λ

, Λ =
sθ1

0sθ
2
0

cθ1
0cθ

2
0 − 1

, (B.17)

and

D(τ, σ)=sθ1
0sθ

2
0

[
(1−cθ1

0cθ
2
0) cos(τ−σ)−sθ1

0sθ
2
0

]
, D(τ1, τ2)=s

4θ1
0(cos τ12−1), (B.18)

and

E(τ1 τ2) ≡ 2π sgn(τ1 − τ2) − 2 (τ1 − τ2). (B.19)

The triple-vertex kernel G(x1, x2, y1) is given in dimensional regularization (d = 2ω) by

G(x1, x2, y1)=
Γ(2ω−3)

26π2ω

∫ 1

0

dαdβdγ
(αβγ)ω−2δ(1 − α− β − γ)

[αβ(x1−x2)2+βγ(x2−y1)2+αγ(x1−y1)2]2ω−3
.

(B.20)

We rewrite (B.16) as

IY =
λ3

8N2

∫ 2π

0

dϑF(ϑ)

∮
dτ1 dτ2 dσ1

Γ(2ω − 3)

26π2ω

× 2(2ω − 3)

∫ 1

0

dα dβ dγ (αβγ)ω−2δ(1 − α− β − γ)O,
(B.21)
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where

O≡ E(τ1 τ2)

∆2ω−2

{
sθ1

0sθ
2
0

(
cos(τ1−σ1)[cθ

1
0cθ

2
0 − 1]+sθ1

0θ
2
0

)(
(2α+β)γsθ1

0sθ
2
0 sin(σ1−τ2)

−(2γ+β)αs2θ1
0 sin τ12

)
+s4θ1

0(1−cos τ12)(2β+γ)αsθ1
0sθ

2
0 sin(τ1−σ1)

}
,

(B.22)

and where

∆ =2αβ s2θ1
0 (1 − cos τ12) + 2βγ

(
1 − sθ1

0sθ
2
0 cos(τ2 − σ1) − cθ1

0cθ
2
0

)

+ 2αγ
(
1 − sθ1

0sθ
2
0 cos(τ1 − σ1) − cθ1

0cθ
2
0

)
.

(B.23)

After [4] we consider the following total derivatives

K1 = −1

2
(cos θ1

0 cos θ2
0 − 1) sin2 θ1

0 ∂τ2

(
E(τ1 τ2)

(1 − cos τ12)

∆2ω−3

)
(B.24)

= −s
2θ1

0

2
(cθ1

0cθ
2
0 − 1) [−4πδ(τ12) + 2]

(1 − cos τ12)

∆2ω−3

+
s2θ1

0

2
(cθ1

0cθ
2
0 − 1)E(τ1 τ2)

sin τ12
∆2ω−3

−s2θ1
0 (cθ1

0cθ
2
0 − 1)E(τ1 τ2) (3 − 2ω)(1 − cos τ12)

×−αβs2θ1
0 sin τ12 − βγsθ1

0sθ
2
0 sin(σ1 − τ2)

∆2ω−2

K2 = sθ1
0sθ

2
0 ∂τ1

(
E(τ1 τ2)

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

)
(B.25)

= sθ1
0sθ

2
0 [4πδ(τ12) − 2]

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

−sθ1
0sθ

2
0E(τ1 τ2)[cθ

1
0cθ

2
0 − 1]

sin(τ1 − σ1)

∆2ω−3

+sθ1
0sθ

2
0 2 (3 − 2ω)E(τ1 τ2)

(
cos(τ1 − σ1)[cθ

1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

)

×
[
αβs2θ1

0 sin τ12 − αγsθ1
0sθ

2
0 sin(σ1 − τ1)

]

∆2ω−2

K3 =
sθ1

0sθ
2
0

2
∂τ2

(
E(τ1 τ2)

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

)
(B.26)

=
sθ1

0sθ
2
0

2
[−4πδ(τ12) + 2]

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

+sθ1
0sθ

2
0 (3 − 2ω)E(τ1 τ2)

(
cos(τ1 − σ1)[cθ

1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

)

×
[
−αβs2θ1

0 sin τ12 − βγsθ1
0sθ

2
0 sin(σ1 − τ2)

]

∆2ω−2

The sum of the three r.h.s. ’s may be expressed as follows (where we use manipulations
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valid under the integrations in (B.21))

K1 +K2 +K3 = 2πδ(τ12) sθ
1
0sθ

2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

−s2θ1
0 (cθ1

0cθ
2
0 − 1)

(1 − cos τ12)

∆2ω−3
− sθ1

0sθ
2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

+
s2θ1

0

2
(cθ1

0cθ
2
0 − 1)E(τ1 τ2)

sin τ12
∆2ω−3

+ sθ1
0sθ

2
0 E(τ1 τ2)(1 − cθ1

0cθ
2
0)

sin(τ1 − σ1)

∆2ω−3

+(3−2ω)s2θ1
0(cθ

1
0cθ

2
0−1)E(τ1τ2)(1−cos τ12)

s2θ1
0αβ sin τ12+sθ1

0sθ
2
0βγ sin(σ1−τ2)

∆2ω−2

+(3 − 2ω) sθ1
0sθ

2
0 E(τ1 τ2)

(
cos(τ1 − σ1)[cθ

1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

)

×s
2θ1

0αβ sin τ12 − 2sθ1
0sθ

2
0αγ sin(σ1 − τ1) − sθ1

0sθ
2
0βγ sin(σ1 − τ2)

∆2ω−2
. (B.27)

We would now like to reconstitute (B.22) using the terms proportional to E(τ1 τ2) in (B.27).

We do this by first stripping-off terms proportional to (4 − 2ω) by writing (3 − 2ω) =

(4 − 2ω) − 1. We define

Ψ ≡ E(τ1 τ2)

∆2ω−2

{
s2θ1

0

2
(cθ1

0cθ
2
0 − 1) sin τ12 ∆ + sθ1

0sθ
2
0 (1 − cθ1

0cθ
2
0) sin(τ1 − σ1)∆ (B.28)

−s2θ1
0(cθ

1
0cθ

2
0−1)(1−cos τ12)

(
s2θ1

0αβ sin τ12+sθ1
0sθ

2
0βγ sin(σ1−τ2)

)

−sθ1
0sθ

2
0

(
cos(τ1 − σ1)[cθ

1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

)

×
(
s2θ1

0αβ sin τ12−2sθ1
0sθ

2
0αγ sin(σ1−τ1)−sθ1

0sθ
2
0βγ sin(σ1−τ2)

)}
,

so that

∑

i

Ki = Ψ + 2πδ(τ12) sθ
1
0sθ

2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3
(B.29)

−s2θ1
0 (cθ1

0cθ
2
0 − 1)

(1 − cos τ12)

∆2ω−3
− sθ1

0sθ
2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

+(4−2ω)s2θ1
0(cθ

1
0cθ

2
0−1)E(τ1τ2)(1−cos τ12)

s2θ1
0αβ sin τ12+sθ1

0sθ
2
0βγ sin(σ1−τ2)

∆2ω−2

+(4 − 2ω) sθ1
0sθ

2
0 E(τ1 τ2)

(
cos(τ1 − σ1)[cθ

1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

)

×s
2θ1

0αβ sin τ12 − 2sθ1
0sθ

2
0αγ sin(σ1 − τ1) − sθ1

0sθ
2
0βγ sin(σ1 − τ2)

∆2ω−2
,

then, expressing the last two terms with derivatives, we have

= Ψ + 2πδ(τ12) sθ
1
0sθ

2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3
(B.30)

−s2θ1
0 (cθ1

0cθ
2
0 − 1)

(1 − cos τ12)

∆2ω−3
− sθ1

0sθ
2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

+
(4 − 2ω)

(3 − 2ω)

s2θ1
0

2
(cθ1

0cθ
2
0 − 1)E(τ1 τ2) (1 − cos τ12) (−∂τ2)

1

∆2ω−3

+
(4 − 2ω)

(3 − 2ω)
sθ1

0sθ
2
0 E(τ1 τ2)

(
cos(τ1 − σ1)[cθ

1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

)(
∂τ1 +

1

2
∂τ2

)
1

∆2ω−3
,
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then using integration by parts in τ1, τ2,

=Ψ − 2πδ(τ12)

(3 − 2ω)
sθ1

0sθ
2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

+
s2θ1

0 (cθ1
0cθ

2
0 − 1)

(3 − 2ω)

(1 − cos τ12)

∆2ω−3
+

sθ1
0sθ

2
0

(3 − 2ω)

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3

− (4 − 2ω)

(3 − 2ω)

E(τ1 τ2)

∆2ω−3
(cθ1

0cθ
2
0 − 1)

(s2θ1
0

2
sin τ12 − sθ1

0sθ
2
0 sin(τ1 − σ1)

)
.

(B.31)

One can then show that

O =Ψ +
E(τ1 τ2)

∆2ω−2
(cθ1

0 − cθ2
0)

2 γ(1 − γ)
(
s2θ1

0 sin τ12 − 2sθ1
0sθ

2
0 sin(τ1 − σ1)

)

+
E(τ1 τ2)

∆2ω−2
s3θ1

0sθ
2
0cθ

1
0(cθ

2
0 − cθ1

0)(2β + γ)α(1 − cos τ12) sin(τ1 − σ1),

(B.32)

and therefore

O = total deriv. + (IY )SE + (IY )1 + (IY )2 + (IY )3 + (IY )ω−2, (B.33)

since
∑
Ki is a total derivative, and where we have introduced

(IY )SE =
2πδ(τ12)

(3 − 2ω)
sθ1

0sθ
2
0

cos(τ1 − σ1)[cθ
1
0cθ

2
0 − 1] + sθ1

0sθ
2
0

∆2ω−3
(B.34)

(IY )1 = −s
2θ1

0(cθ
1
0cθ

2
0−1)

(3 − 2ω)

(1−cos τ12)

∆2ω−3
− sθ1

0sθ
2
0

(3−2ω)

cos(τ1−σ1)[cθ
1
0cθ

2
0 − 1]+sθ1

0sθ
2
0

∆2ω−3

(IY )2 =
E(τ1 τ2)

∆2ω−2
(cθ1

0 − cθ2
0)

2 γ(1 − γ)
(
s2θ1

0 sin τ12 − 2sθ1
0sθ

2
0 sin(τ1 − σ1)

)

(IY )3 =
E(τ1 τ2)

∆2ω−2
s3θ1

0sθ
2
0cθ

1
0(cθ

2
0 − cθ1

0)(2β + γ)α(1 − cos τ12) sin(τ1 − σ1) (B.35)

(IY )ω−2 =
(4 − 2ω)

(3 − 2ω)

E(τ1 τ2)

∆2ω−3
(cθ1

0cθ
2
0 − 1)

(s2θ1
0

2
sin τ12 − sθ1

0sθ
2
0 sin(τ1 − σ1)

)
.

Plugging these forms back into (B.21) one finds that half of the 1-loop corrected two-rung

diagram is canceled by (IY )SE (the θ1
0 ↔ θ2

0 piece takes care of the other half), and that

(IY )ω−2 is zero on the physical dimension ω = 2. The remaining terms (IY )1,2,3 are finite

on the physical dimension and must be evaluated (along with their θ1
0 ↔ θ2

0 counterparts).

In the following subsections we recast (IY )1,2,3 in terms of bulk integrations.

B.3.1 (IY )1

Plugging (IY )1 from (B.34) into (B.21), and reverting to bulk integration, one finds

Π1 =
λ3

4N2

1

4π

(
cθ1

0cθ
2
0 − 1 + |cθ1

0 − cθ2
0|
) 1

64π6

∮
dτ1 dτ2 dσ1 (B.36)

×
∫
d4w

s2θ1
0(cθ

1
0cθ

2
0−1)(1−cos τ12)+sθ

1
0sθ

2
0

(
cos(τ1−σ1)[cθ

1
0cθ

2
0−1]+sθ1

0sθ
2
0

)

(x1 − w)2(x2 − w)2(y1 − w)2
,
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where we have used the result

∫ 2π

0

dϑF(ϑ) =
1

4π

(
cθ1

0cθ
2
0 − 1 + |cθ1

0 − cθ2
0|
)
. (B.37)

We now continue by integrating over τ1, τ2, and σ1. We find

Π1 =
λ3

4N2

1

4π

(
cθ1

0cθ
2
0 − 1 + |cθ1

0 − cθ2
0|
) 1

64π6

∫
d4w (B.38)

×
[
s2θ1

0cθ
2
0(cθ

1
0−cθ2

0)I
2(θ1

0)I(θ
2
0)−s2θ1

0(cθ
1
0cθ

2
0−1)

(
I2
c (θ1

0)+I
2
s (θ1

0)
)
I(θ2

0)

+sθ1
0sθ

2
0 (cθ1

0cθ
2
0 − 1)

(
Ic(θ

1
0) Ic(θ

2
0) + Is(θ

1
0) Is(θ

2
0)
)
I(θ1

0)
]
.

Taking the coincident limit, one finds this contribution to be subleading.

B.3.2 (IY )2

This contribution is significantly more complicated due to the presence of the E(τ1 τ2) in

the integrand. Plugging (IY )2 from (B.35) into (B.21), we need to evaluate

Π2 =
λ3

4N2

1

4π

(
cθ1

0cθ
2
0 − 1 + |cθ1

0 − cθ2
0|
)
(cθ1

0 − cθ2
0)

2 1

2 (cθ1
0 − cθ2

0)

∂

∂(cθ2
0)

1

64π6

∫
d4w

×
∮
dτ1 dτ2 dσ1E(τ1 τ2)

(
s2θ1

0 sin τ12 − 2sθ1
0sθ

2
0 sin(τ1 − σ1)

)

(x1 − w)2 (x2 − w)2 (y1 − w)2
, (B.39)

where we treat cθ2
0 and sθ2

0 as independent variables for the purposes of differentiation,

and therefore must be cautious not to use trigonometric identities which relate them until

after the derivative has been taken. With this prescription

∆ =2αβs2θ1
0(1 − cos τ12) + βγ

[
s2θ1

0 + s2θ2
0 + (cθ1

0 − cθ2
0)

2 − 2sθ1
0sθ

2
0 cos(τ2 − σ1)

]

+ αγ
[
s2θ1

0 + s2θ2
0 + (cθ1

0 − cθ2
0)

2 − 2sθ1
0sθ

2
0 cos(τ1 − σ1)

]
,

(B.40)

and hence the factor γ(1 − γ) in (B.35) is obtained through the derivative in cθ0. The

evaluation of the integrals over τ1, τ2, and σ1 are as in [4]. The results are

C1 ≡
∮
dτ1 dτ2 dσ1E(τ1 τ2)

sin τ12
(x1 −w)2 (x2 − w)2 (y1 − w)2

=
64π3

√
a2

1 − (b21 + c21)
√
a2

2 − (b22 + c22)

a1

(b21 + c21)
ln

(
a1 +

√
a2

1 − (b21 + c21)

2
√
a2

1 − (b21 + c21)

)
(B.41)

C2 ≡
∮
dτ1 dτ2 dσ1E(τ1 τ2)

sin(τ1 − σ1)

(x1 −w)2 (x2 − w)2 (y1 − w)2

=
32π3

√
a2

1 − (b21 + c21)
√
a2

2 − (b22 + c22)

b1b2 + c1c2

(b21 + c21)
[
a2 +

√
a2

2 − (b22 + c22)
]

× ln

(
a1 +

√
a2

1 − (b21 + c21)

2
√
a2

1 − (b21 + c21)

)
(B.42)
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where the {a, b, c}i are given by (B.2) and where the index refers to either θ1
0 or θ2

0. We

therefore have that

Π2 =
λ3

4N2

1

4π

(
cθ1

0cθ
2
0−1+|cθ1

0−cθ2
0|
) (cθ1

0−cθ2
0)

2

1

64π6

∫
d4w∂cθ2

0

(
s2θ1

0C1−2sθ1
0sθ

2
0C2

)
.

(B.43)

Taking the coincident limit, one finds this contribution to be subleading.

B.3.3 (IY )3

Looking at (B.35) we see that we must express the integrand

E(τ1 τ2)

∆2ω−2
(2αβ + αγ)(1 − cos τ12) sin(τ1 − σ1) (B.44)

without Feynman parameters. Referring to (B.40), and again treating sθ0 and cθ0 as

independent, we see that

∂sθ1
0
∆ = 4αβsθ1

0(1−cos τ12)+2βγ(sθ1
0−sθ2

0 cos(τ2−σ1))+2αγ(sθ1
0−sθ2

0 cos(τ1−σ1))

∂sθ2
0
∆ = 2βγ(sθ2

0 − sθ1
0 cos(τ2 − σ1)) + 2αγ(sθ2

0 − sθ1
0 cos(τ1 − σ1)) (B.45)

and therefore

(
sθ1

0∂sθ1
0
− sθ2

0∂sθ2
0

)
∆ = 4αβs2θ1

0(1 − cos τ12) + 2γ(1 − γ)
(
s2θ1

0 − s2θ2
0

)
. (B.46)

Whereas

(1 − cos τ12)∂τ1∆ =(1 − cos τ12)
[
2αβs2θ1

0 sin τ12 + 2αγsθ1
0sθ

2
0 sin(τ1 − σ1)

]

= sin τ12

[
∆−βγ

[
s2θ1

0+s2θ2
0+(cθ1

0−cθ2
0)

2−2sθ1
0sθ

2
0 cos(τ2−σ1)

]

− αγ
[
s2θ1

0+s2θ2
0+(cθ1

0−cθ2
0)

2−2sθ1
0sθ

2
0 cos(τ1−σ1)

]]

+ 2αγsθ1
0sθ

2
0 sin(τ1 − σ1)(1 − cos τ12)

= sin τ12

[
∆ − γ(1 − γ)

[
s2θ1

0 − s2θ2
0 + (cθ1

0 − cθ2
0)

2
]
− sθ2

0∂sθ2
0
∆
]

+ 2αγsθ1
0sθ

2
0 sin(τ1 − σ1)(1 − cos τ12).

(B.47)

We therefore have that

(2αβ + αγ)(1 − cos τ12) sin(τ1 − σ1)

∆2ω−2
=

(
sθ1

0∂sθ1
0
− sθ2

0∂sθ2
0

)

2(3 − 2ω)s2θ1
0

sin(τ1 − σ1)

∆2ω−3

−γ(1−γ)
(
s2θ1

0−s2θ2
0

)

s2θ1
0

sin(τ1−σ1)

∆2ω−2
+

(1−cos τ12)

2(3−2ω)sθ1
0sθ

2
0

∂τ1

1

∆2ω−3

− sin τ12
2sθ1

0sθ
2
0

1

∆2ω−3
+

sin τ12
2(3 − 2ω)sθ1

0

∂sθ2
0

1

∆2ω−3

+ γ(1 − γ) sin τ12

[
s2θ1

0 − s2θ2
0 + (cθ1

0 − cθ2
0)

2
]

2sθ1
0sθ

2
0

1

∆2ω−2
.

(B.48)
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We now can express the γ(1 − γ) as a derivative in cθ2
0, as per the previous subsection.

Further we note that under integration (and for ω = 2)

E(τ1 τ2)

[
(1 − cos τ12)

2(3 − 2ω)sθ1
0sθ

2
0

∂τ1

1

∆2ω−3
− sin τ12

2sθ1
0sθ

2
0

1

∆2ω−3

]
=

(1 − cos τ12)

(3 − 2ω)sθ1
0sθ

2
0

1

∆2ω−3
(B.49)

by integration by parts in τ1. The r.h.s. is then integrated as per (IY )1, and expressed

in terms of I(θ0), Ic(θ0), Is(θ0). The (IY )3 contribution from (B.35), once plugged-in

to (B.21), is then expressed as

Π3 =
λ3

4N2

1

4π

(
cθ1

0cθ
2
0 − 1 + |cθ1

0 − cθ2
0|
)
s3θ1

0 sθ
2
0 cθ

1
0(cθ

1
0 − cθ2

0)
1

64π6

∫
d4w

×
{

1

2sθ1
0sθ

2
0

(
sθ2

0∂sθ2
0

+ cθ2
0∂cθ2

0

)
C1

+
1

2s2θ1
0

(
sθ1

0∂sθ1
0
− sθ2

0∂sθ2
0
−
(
cθ1

0 + cθ2
0

)
∂cθ2

0

)
C2

+
1

sθ1
0sθ

2
0

I(θ2
0)
[
I2(θ1

0) − I2
c (θ1

0) − I2
s (θ1

0)
]
}
.

(B.50)

In taking the coincident limit one finds leading contributions which we have labelled (iy3)1
and (iy3)2 and are given by

(iy3)1=
λ3

N2

s2θ0cθ0
256π3

|h|
∫

∞

−∞

dρdw2dw3

cot θ0(ρ
2−w2

2−w2
3)−2ρw2+ρ(1+cot2 θ0)

R1(w)3/2R2(w)3/2
,(B.51)

(iy3)2=− λ3

N2

s2θ0cθ0
256π3

|h|
∫

∞

−∞

dρ dw2 dw3 ln
(
ρ2 + w2

2 + w2
3

)

×ρ(ρ
2 + w2

2 + w2
3) + cot θ0(3ρ

2 + w2
2 + w2

3) − 2w2ρ+ ρ(1 + cot2 θ0)

R1(w)3/2R2(w)3/2
. (B.52)
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